Supporting Data Mining of Large Databases by Visual Feedback Queries
نویسندگان
چکیده
In this paper, we describe a query system that provides visual relevance feedback in querying large databases. Our goal is to support the process of data mining by representing as many data items as possible on the display. By arranging and coloring the data items as pixels according to their relevance for the query, the user gets a visual impression of the resulting data set. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. Furthermore, by using multiple windows for different parts of a complex query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. Our system allows to represent the largest amount of data that can be visualized on current display technology, provides valuable feedback in querying the database, and allows the user to find results which, otherwise, would remain hidden in the database.
منابع مشابه
Using Visualization to Support Data Mining of Large Existing Databases
In this paper, we present ideas how visualization technology can be used to improve the difficult process of querying very large databases. With our VisDB system, we try to provide visual support not only for the query specification process. but also for evaluating query results and. thereafter, refining the query accordinky. The main idea of our system is to represent as many data items as pos...
متن کاملA Method for Protecting Access Pattern in Outsourced Data
Protecting the information access pattern, which means preventing the disclosure of data and structural details of databases, is very important in working with data, especially in the cases of outsourced databases and databases with Internet access. The protection of the information access pattern indicates that mere data confidentiality is not sufficient and the privacy of queries and accesses...
متن کاملEfficiently Supporting Multiple Similarity Queries for Mining in Metric Databases
Metric databases are databases where a metric distance function is defined for pairs of database objects. In such databases, similarity queries in the form of range queries or k-nearest neighbor queries are the most important queries. In traditional query processing, single queries are issued independently by different users. In many data mining applications, however, the database is typically ...
متن کاملApply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML
As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...
متن کاملApply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML
As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994